Introduction to spin physics, part II

Barbara Badełek University of Warsaw

EIC PL Seminar

Warsaw, 25 I 2021

I thank the following colleagues:

M. Anselmino (DIS2019, Bad Honnef, 2017)

A. Bacchetta (Baryon2013, DIS2017, DIS2019)

F. Bradamante (IWHSS2019)

M. Contalbrigo (IWHSS2020)

J. Rojo (DIS2019)

and others...

whose slides I used or followed.

There are more dimensions to explore, e.g. 3-D!

chiefly due to failures of the 1-D picture

Partonic structure of the nucleon; distribution functions

- In LT and considering k_T,
 8 PDF describe the nucleon
 ⇒ Transverse Momentum Dependent PDF
- QCD-TMD approach valid $k_{
 m T} \ll \sqrt{Q^2}$
- After integrating over $k_{\rm T}$ only 3 survive: f_1,g_1,h_1
- TMD accessed in SIDIS and DY by measuring azimuthal asymmetries with different angular modulations
- lacktriangle SIDIS: e.g. $A_{\mathrm{Sivers}} \propto \mathsf{PDF} \otimes \mathsf{FF}$
- DY: e.g. $A_{\mathrm{Sivers}} \propto \mathsf{PDF}^{\mathrm{beam}} \otimes \mathsf{PDF}^{\mathrm{target}}$
- OBS! Boer-Mulders and Sivers PDF are T-odd, i.e. process dependent

$$h_1^{\perp}(SIDIS) = -h_1^{\perp}(DY)$$

$$f_{1T}^{\perp}(SIDIS) = -f_{1T}^{\perp}(DY)$$

- OBS! transversity PDF is chiral-odd; may only be measured with another chiral-odd partner, e.g. fragmentation function.
- TMD parton distributions need TMD Fragmentation Functions!

What does Sivers effect do?

3D maps of partonic distribution

A. Bacchetta, DIS2017

Semi-Inclusive Deep Inelastic Scattering

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} \right. \\ &+ \varepsilon\cos(2\phi_h)\,F_{UU}^{\cos\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\sin(2\phi_h)\,F_{UL}^{\sin2\phi_h}\right] + S_{\parallel}\lambda_e \left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ &+ |S_{\perp}| \left[\sin(\phi_h - \phi_S)\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\,F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) \right. \\ &+ \varepsilon\,\sin(\phi_h + \phi_S)\,F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon\,\sin(3\phi_h - \phi_S)\,F_{UT}^{\sin(3\phi_h - \phi_S)} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S)\,F_{UT}^{\sin(2\phi_h - \phi_S)}\right] \\ &+ |S_{\perp}|\lambda_e \left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,F_{LT}^{\cos\phi_S} \right. \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S)\,F_{LT}^{\cos(2\phi_h - \phi_S)}\right] \bigg\}, \end{split}$$

IWHSS19, Aveiro, 24 June 2019

Semi-Inclusive Deep Inelastic Scattering

14 independent azimuthal modulations

amplitudes of the modulations → TMD PDFs

IWHSS19, Aveiro, 24 June 2019

Drell-Yan cross-section

general expression

$$\begin{split} \frac{d\sigma}{dq^4d\Omega} &\propto \hat{\sigma}_U \, \left\{ 1 + \cos^2\theta_{CS} \, A_U^{1} + \sin 2\theta_{CS} \, A_U^{\cos\varphi_{CS}} \cos\varphi_{CS} + \sin^2\theta_{CS} \, A_U^{\cos 2\varphi_{CS}} \cos 2\varphi_{CS} \right. \\ & \left. + S_T \, \left[\left(A_T^{\sin\varphi_S} + \cos^2\theta_{CS} \tilde{A}_T^{\sin\varphi_S} \right) \sin\varphi_S \right. \\ & \left. + \sin 2\theta_{CS} \left(A_T^{\sin(\varphi_{CS} + \varphi_S)} \sin(\varphi_{CS} + \varphi_S) + A_T^{\sin(\varphi_{CS} - \varphi_S)} \sin(\varphi_{CS} - \varphi_S) \right) \right. \\ & \left. + \sin^2\theta_{CS} \left(A_T^{\sin(2\varphi_{CS} + \varphi_S)} \sin(2\varphi_{CS} + \varphi_S) + A_T^{\sin(2\varphi_{CS} - \varphi_S)} \sin(2\varphi_{CS} - \varphi_S) \right) \right] + \cdots \right\} \end{split}$$

$$\lambda = A_U^1, \mu = A_U^{\cos \varphi_{CS}}, \nu = 2 A_U^{\cos 2\varphi_{CS}}$$

IWHSS19, Aveiro, 24 June 2019

Drell-Yan cross-section

$$\begin{array}{c} \operatorname{general\ expression} & \pi^- p \to l^+ l^- X \\ & \operatorname{d}\sigma \\ & \operatorname$$

IWHSS19, Aveiro, 24 June 2019

F. Bradamante

Results for the Sivers asymmetry for protons (SIDIS)

COMPASS, Phys.Lett. B744 (2015) 250

M.Anselmino et al., JHEP 1704(2017)046

- Sivers asymmetries for proton measured for +/- identified hadrons are large for π^+ , K⁺...
- ...and even larger at smaller Q^2 (HERMES)
- COMPASS deuteron data show very small asymmetry

Sivers function at EIC

x=0.1, proton \perp polarised along y, moving along z quark "flow" in a nucleon

From "White paper", arXiv:1212.1701

EIC acceptance for Sivers meas.

O. Eyser, SPIN2016

The COMPASS bridge

COMPASS:

SIDIS-DY bridge

comparable x:Q2 kinematic coverage

minimization of possible Q² evolution effects

Unique experimental environment to test TMD universality and Sivers and Boer-Mulders sign change

SIVERS FUNCTION SIGN CHANGE

Sivers function SIDIS = - Sivers function Drell-Yan

Collins, PLB 536 (02)

A. Bacchetta, DIS2019

3-D proton (in a different way GPD)

Generalised Parton Distributions (GPD)

- ullet Accessible via DVCS/DVMP: $\mu \mathrm{p} o \mu \mathrm{p} \gamma(\mathrm{M})$
- 4 GDPs $(H, E, \widetilde{H}, \widetilde{E})$ for each flavour and for gluons plus 4 chiral odd ones $(H_T, E_T, \widetilde{H}_T, \widetilde{E}_T)$
- All depend on 4 variables: x, ξ, t, Q^2 ; DIS @ $\xi = t = 0$; Careful ! Here $x \neq x_{\rm B}$!
- H, \widetilde{H} conserve nucleon helicity E, \widetilde{E} flip nucleon helicity
- H, E refer to unpolarised distributions $\widetilde{H}, \widetilde{E}$ refer to polarised distributions
- $H^q(x,0,0) = q(x), \ \widetilde{H}^q(x,0,0) = \Delta q(x)$

Important:

$$J_z^q = rac{1}{2} \int dx \; x \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right] = rac{1}{2} \Delta \Sigma + L_z^q \; \; ext{(X. Ji)}$$

3D Imaging

Universal QCD fits

Pushing the **precision frontier** of **QCD fits** requires accounting for cross-talk between different non-perturbative QCD quantities

Towards universal/integrated global analyses of non-perturbative QCD 52

Juan Rojo

...Proton even 5-D!

(ultimate goal)

Descriptions of pdf s in the nucleon

From "White paper", arXiv:1212.1701

Any help from Lattice QCD?

Lattice QCD developements (hep-ph 2006.08636v2)

$$q^{\pm} \equiv q \pm \bar{q}$$
 $\Delta q^{\pm} \equiv \Delta q \pm \Delta \bar{q}$

n-th moments (momentum, helicity):

$$\langle x^{n} \rangle_{u^{+}-d^{+}}(Q^{2}) = \int_{0}^{1} dx \, x^{n} \left\{ u(x, Q^{2}) + \bar{u}(x, Q^{2}) - d(x, Q^{2}) - \bar{d}(x, Q^{2}) \right\}$$
$$\langle x^{n} \rangle_{\Delta u^{+}-\Delta d^{+}}(Q^{2}) = \int_{0}^{1} dx \, x^{n} \left\{ \Delta u(x, Q^{2}) + \Delta \bar{u}(x, Q^{2}) - \Delta d(x, Q^{2}) - \Delta \bar{d}(x, Q^{2}) \right\}$$

Lattice QCD developements (hep-ph 2006.08636v2)

Lattice developements...cont'd (hep-lat 1902.00587v1)

Take-away menu

Proton structure very rich and developing quickly!

- 1-D proton momentum structure accurate and well controlled.
 Helicity and transversity (!) PDF need more effort.
- Experimental results suggest a necessity to go beyond the collinear parton picture of the nucleon.
- New promising concepts, which include spin (also as a tool):
 - 1. Transverse Momentum Dependent distributions, TMD
 - 2. Generalised Parton Distributions, GPD (not discussed).
- Data from: SIDIS, pp, Drell-Yan, e⁺e⁻ (not discussed)
 formulation of the 3-D imaging of the nucleon well advanced.
- Expected: new data from COMPASS, RHIC, LHCSpin, JLab at 12 GeV and the forthcoming Electron Ion Collider!
- Topical issue of EPJA dedicated to the 3-D nucleon structure: EPJ A52 (2016) no.6 (15 articles)!

SPARES

Drell-Yan process at COMPASS

• $\pi^- + p \rightarrow \mu^+ \mu^- + X$, beam: 190 GeV/c, target: \perp polarised proton (NH₃)

COMPASS spin-dependent asymmetries in DY-SIDIS

In 2018 statistics \approx 1.5 \times 2015!

First results from RHIC, $p^\uparrow p \to W^\pm X$

STAR Collaboration, PRL 116 (2016) 132301

some hints at sign change of Sivers function....

COMPASS polarised targets: NH₃ and ⁶LiD

- * Two (three) target cells, oppositely polarised * Polarisation reversed every 8 h (less frequent after 2005) by field rotation
- * Material: solid ⁶LiD (NH₂)
- * Polarisation: ~ 50% (~90%), by the Dynamical Nuclear Polarisation
- * Dilution: f~0.4 (~0.15)
- * Polar acceptance: ~70 mrad (~180 mrad after 2005)

NLO QCD fit: results for g_1^p , g_1^d , g_1^{d+e} inclusive data, $W^2 > 10$ (GeV/ c^2)

PLB 753 (2016) 18

- Statistical uncertainties (dark bands)
 ≪ systematic (light bands)
- ullet Gluon polarisation poorly constraint \Longrightarrow "direct" methods
- Quark spin contribution to the nucleon spin: 0.26 $< \Delta \Sigma <$ 0.36 (due to poor Δg)

Semi-inclusive asymmetries and parton distributions

 COMPASS: measured on both proton and deuteron targets for identified, positive and negative pions and (for the first time) kaons

- COMPASS: LO DSS fragm. functions and LO unpolarised MRST assumed here.
- NLO parameterisation of DSSV describes the data well.

Direct measurements of $\Delta g(x)$

Direct measurements – via the cross section asymmetry for the photon–gluon fusion (PGF) with subsequent fragmentation into $c\bar{c}$ (LO, NLO) or $q\bar{q}$ (high p_{T} hadron pair (LO)): $A_{\gamma\mathrm{N}}^{\mathrm{PGF}} \approx \langle a_{\mathrm{LL}}^{\mathrm{PGF}} \rangle \frac{\Delta g}{q}$

COMPASS from SIDIS on d for any $(p_{\rm T})_{\rm h}$ and at LO:

 $\Delta g/g = 0.113 \pm 0.038 ({
m stat.}) \pm 0.036 ({
m syst.})$ at $\langle Q^2 \rangle \approx 3 \ ({
m GeV/}c)^2, \ \langle x_g \rangle \approx 0.10$ clearly positive gluon polarisation!

Supersymmetry

Expected symmetry; transforms

- For fermions Pauli principle; for bosons no!
- Partners of all known particles expected:

particle	spin (ħ)	sparticle sparticle	spin (ħ)
q	1/2	squark, \tilde{q}	0
1	1/2	slepton, \tilde{l}	0
γ	1	fotino, $ ilde{\gamma}$	1/2
g	1	gluino, $ ilde{g}$	1/2
W, Z	1	vino, $ ilde{W}$; zino, $ ilde{Z}$	1/2
Н	0	higgsino, $ ilde{H}$	1/2
G	2	gravitino, $ ilde{G}$	3/2

- Of course it is broken.
 - Makes a framework for unification of all interactions.

